
www.elsevier.com/locate/ijhff

International Journal of Heat and Fluid Flow 27 (2006) 594–602
A new approach to LES based on explicit filtering

Joseph Mathew a,*, Holger Foysi b, Rainer Friedrich b,1

a Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012, India
b Fachgebiet Stroemungsmechanik, Technische Universitaet Muenchen, Boltzmannstr. 15, D-85748 Garching, Germany

Available online 23 March 2006
Abstract

A new model for large eddy simulation is derived by considering a formal extension to the deconvolution method of Stolz et al. [Stolz,
S., Adams, N., 1999. An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids 11, 1699–1701] as interpreted in
Mathew et al. [Mathew, J., Lechner, R., Foysi, H., Sesterhenn, J., Friedrich, R., 2003. An explicit filtering method for LES of compress-
ible flows. Phys. Fluids 15(8), 2279–2289]. The new model terms are shown to reduce the error in approximating the governing differ-
ential equations, and are evaluated with a simple, additional filtering step. This approach holds special promise for compressible
flows, which have several kinds of nonlinearities besides convection, because all nonlinearities are treated in a uniform, mathematically
consistent way without recourse to heuristic modeling. The method was assessed by computing supersonic channel flows with passive
scalar transport at high Reynolds numbers and found to give excellent results.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

A large eddy simulation (LES) contains only a range of
the largest scales of a turbulent flow. The omitted small
scales have an effect on the large scales because the problem
is nonlinear. LES models are needed to account for this
effect. A heuristic LES model, like the Smagorinsky model,
follows from the nature of the additional terms which
appear in the LES equations due to the omitted scales.
For incompressible flow these are stresses which the model
evaluates from known large-scale strain rates. Other heu-
ristic approaches incorporate features expected in an LES
such as the transfer of energy between the computed and
omitted scales. An accurate LES should require that all
properties, known and unknown, be represented accurately
in the simulation. However, explicit provisions are not
always made, nor have they proved to be necessary. For
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example, there are several LES approaches without explicit
models, termed ILES, which argue that the numerical
method provides the required properties implicitly (Boris
et al., 1992; Visbal and Rizzetta, 2002). An extension of
the ILES concept which combines the LES formalism with
an adapted numerical method is discussed in Adams et al.
(2004). In this paper, we propose a new approach in which
the LES model terms are derived rigorously from the basic
equations without any heuristic modeling. The method
turns out to be easy to implement as it requires only a
few explicit filtering operations.

The equations for an LES field are derived by applying a
low-pass filter to the equations for the unfiltered field. New
terms, often called sub-grid-scale (SGS) terms, which are
functions of the unfiltered field appear. Models like the
Smagorinsky model replace such terms with others that
depend on the LES field alone. A different approach is to
estimate the unfiltered field, use the estimate to compute
the SGS terms, and thus close the LES equations. Shah
and Ferziger (1995) assumed the implied filter to be a top-
hat filter and related the LES variable implicitly to the unfil-
tered variable through local Taylor series expansions and
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finite difference formulas. The estimated unfiltered field was
found by inverting the relation. Geurts (1997) also assumed
the implied filter to be a top-hat and constructed inverse fil-
ters of various orders such that polynomials could be
inverted exactly. In the approximate deconvolution method
(ADM) of Stolz and Adams (1999), filters were explicitly
defined. A low-order Padé formula (Gaussian-like filter)
related the unfiltered variable to the LES variable. During
the simulations, approximate deconvolution of the LES
field using the van Cittert formula gave an estimate of the
unfiltered field. An expectation in these methods is that
the deconvolution or inversion yields a field which is accu-
rate over a large part of the computed large scales. In turn,
the SGS terms are also accurate over a similar range which
ensures the accurate evolution of the LES field. An essential
requirement is that the numerical integration scheme is of
high resolution so that it does not add its own filtering of
large scales. Spectral or compact schemes are good candi-
dates. The scale similarity model of Bardina (1983) is also
an example of this approach where the LES field itself is
taken as an estimate of the unfiltered field. Another related
approach is the velocity estimation model introduced in
Domaradzki and Saiki (1997). They perform a supplemen-
tary simulation over twice the LES scale range to find an
estimate of the unfiltered field which is accurate over the
LES scales.

Although deconvolution can be used to compute the
SGS terms, a stable LES requires a treatment for the
energy transfer to the smaller omitted scales. Excessive
transfer will reduce the content of the computed scales
resulting in a less accurate solution whereas inadequate
transfer will cause the solution to diverge. Methods to han-
dle this requirement are termed regularizations. In mixed
models the Smagorinsky part provides for this energy
transfer. In ADM, an ad hoc low-order term was added,
with a free coefficient to provide regularization. A new
class of SGS models called high-pass filtered (HPF) models
have appeared recently. Using HPF fields with eddy viscos-
ity models provides a regularization and allows LES to be
performed without any special wall damping. This type of
model has been proposed independently by Vreman (2003)
and Stolz et al. (2004). Schlatter et al. (2005) have further
improved these models and successfully applied them to
transitional flows. Its use for the prediction of compressible
flows was suggested by Stolz et al. (2004).

Mathew et al. (2003) interpreted ADM as a nearly
equivalent procedure of explicit, low-pass filtering of the
solution between integration time-steps. It was shown that
the formally separate components of ADM (primary filter-
ing, deconvolution and regularization by a secondary filter-
ing) could all be combined into a single filtering step with a
composite filter. This composite filter has a response func-
tion which is unity over a large part of the represented
wavenumbers and then, beyond an effective cut-off, falls
off smoothly to zero at high wavenumbers ensuring that
the high wavenumber content is suppressed. The results
were found to be accurate and, more importantly for gen-
eral application, reliable and consistent: solutions
improved monotonically when grid spacing or filter cut-
off length was reduced.

In this paper, the analysis has been extended to find new
model terms which are derived directly from nonlinear
terms in the original equations. All aspects of this model
have been obtained without recourse to heuristics. For a
given problem, the simulation may benefit from or even
require, some understanding of the flow, but even laminar
flows have such requirements. As an added attraction, the
model can be implemented in high-resolution direct numer-
ical simulation (DNS) codes easily, using simple, explicit
filtering procedures.

As in Mathew et al. (2003), the present model was also
applied to supersonic channel flows and found to give good
results. Dramatic improvements are not possible when the
previous solutions are themselves very close to the corre-
sponding DNS. The uniqueness of the present proposal is
that it is a completely non-heuristic LES model, but its
advantages may become apparent only with wider applica-
tion. In the following sections, first, a derivation of the new
model is given. After a short description of the numerical
method used, results of large-eddy simulations of super-
sonic channel flow at a bulk Reynolds number Re = 6000
and Mach number Ma = 3 are discussed. Transport of a
passive scalar has also been included. A comparison of
LES with the new method, the previous filtering method
(with and without regularization) and the corresponding
DNS demonstrates the power of the new method.

2. New LES model

The essential aspects of the new method can be under-
stood by applying it to the generic, one-dimensional trans-
port equation for u(x, t),

ou
ot
þ of ðuÞ

ox
¼ 0; ð1Þ

where f(u) is a nonlinear function. Computing a low wave-
number solution, as in an LES, implies a filtering of Eq. (1):

o�u
ot
þ G � of ðuÞ

ox
¼ 0. ð2Þ

Here, G is a low-pass filter and filtered quantities are ob-
tained by convolution: �u ¼ G � u ¼

R
Gðx� x0Þuðx0Þdx0.

Eq. (2) can be written as

o�u
ot
þ of ð�uÞ

ox
¼ of ð�uÞ

ox
� G � of ðuÞ

ox
ð3Þ

by introducing the quantity of ð�uÞ=ox. Eq. (3) is the LES
equation, i.e., the equation for the variable �uðx; tÞ, which
is usually considered as the LES variable. The terms on
the rhs arise iff f(u) is nonlinear, and require an LES model
because u is not known. We can rewrite Eq. (3) as

o�u
ot
þ of ð�uÞ

ox
¼ of ð�uÞ

ox
� G � of ðu�Þ

ox
þ G � of ðu�Þ

ox
� of ðuÞ

ox

� �
ð4Þ
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by introducing the quantity of(u*)/ox. Here u�ðx; tÞ ¼ Q � �u
is an approximation to u(x, t) obtained by approximate
deconvolution. Q is an approximate inverse of the filter G

such that Q * G � I (identity operator) over most of the
large scales considered. When the field u(x, t) has little con-
tent beyond these large scales, it follows that

G � u� � G � u. ð5Þ
Condition (5) is an expectation for an LES performed with
the present explicit filtering approach to be successful. If
u(x, t) has significant content at computed small scales,
which would be suppressed by this method, the LES may
be viewed as a strongly smoothed solution. If there is con-
tent at very fine scales which are not computed in the LES,
the effect of these small scale processes (such as thin fronts/
flames) must be accounted for separately. Only then will
condition (5) be met.

2.1. Basic model

In the ADM of Stolz and Adams (1999), and the explicit
filtering method presented before (Mathew et al., 2003), the
model u = u* was used. Then, the last two terms in Eq. (4)
drop out. The resulting LES problem is

o�u
ot
þ G � of ðu�Þ

ox
¼ 0; u� ¼ Q � �u.

To derive the solution procedure, we use the forward Euler
scheme just to demonstrate the numerical integration of
this LES problem from �un to �unþ1:

�unþ1 ¼ �un � DtG � of ðu�ðnÞÞ
ox

. ð6Þ

The timestep is Dt. We can approximate the rhs of Eq. (6)
as

�un � DtG � of ðu�ðnÞÞ
ox

¼ G � u�ðnÞ � Dt
of ðu�ðnÞÞ

ox

� �
ð7Þ

because we expect condition (5) to hold. Then, the quantity
within the square brackets on the rhs of Eq. (7) is the field
u*(n+1) that is obtained by integrating Eq. (1) for the unfil-
tered variable taken to be u*. The integration of the LES
problem can now be written as three steps:

(1) Deconvolution: u�ðnÞ ¼ Q � �un.
(2) Integration: u*(n+1) = u*(n) � Dt of(u*(n))/ox.
(3) Filtering: �unþl ¼ G � u�ðnþ1Þ.

Since these three steps are executed repeatedly, step (1)
follows step (3) and can be combined into the single filter-
ing step

u�ðnþ1Þ  Q � G � u�ðnþ1Þ

after every integration (step (2)). Over a range of computed
large scales, there is no filtering because QG � I. Over this
range, the numerical integration should not cause any fil-
tering either. The filtering characteristics of the composite
filter QG on the smallest computed scales are important
in determining the efficiency of the LES. If the filtering is
too strong, a finer grid (larger range of computed scales)
is necessary. If it is too weak, additional filtering is needed.
For example, Stolz and Adams (1999) added an ad hoc

term with a free parameter which was chosen dynamically.
This term models the transfer of energy to small scales and
is nearly equivalent to a filter which suppresses the high
wavenumber part of u*. In Mathew et al. (2003) it was
noted that this additional filtering is not distinct in any
meaningful way from moving the cut-off of the composite
filter QG to a slightly larger scale, for the filters that they
considered.

To summarize: an LES technique with the basic model is
obtained by integrating the given differential equation for
the unfiltered variable and filtering after every time-step
with a composite filter QG. QG � I over a range of com-
puted large scales and suppresses content in the high wave-
number part of this range. Any filtering due to the
numerical scheme is restricted to the scales which are sup-
pressed by the QG filter.

2.2. Refined model

A refined LES technique is obtained by estimating the
two terms on the rhs of Eq. (4) which had vanished in
the basic model. By definition, u� ¼ Q � �u ¼ Q � G � u.
Then, the sub-filter-scale (SFS) quantity is

f ðu�Þ � f ðuÞ ¼ f ðQ � G � uÞ � f ðuÞ. ð8Þ
An estimate of this SFS quantity can be obtained by setting
u = u* in the expression on the right hand side of Eq. (8).
The differential equation for the LES problem with new
terms reads

o�u
ot
þ G � of ðu�Þ

ox
¼ G � o

ox
½f ðQ � G � u�Þ � f ðu�Þ�;

u� ¼ Q � �u.

The method proposed above for the basic model applies
here. So, the LES is performed by integrating the equation

ou�

ot
þ of ðu�Þ

ox
¼ o

ox
½f ðQ � G � u�Þ � f ðu�Þ�;

which is essentially Eq. (1) augmented with model terms,
and filtering after each time-step with filter QG. Model
terms are found easily by computing each nonlinear term
with a further filtered field Q * G * u*. Implementation in
direct numerical simulation codes is thus straightforward.

2.3. Model error estimate

Before applying any model, the LES equation is (4).
When the approximate deconvolution model u = u* is
applied, the last two terms in (4), which drop out, measure
the error in approximating the differential equation

�0 ¼ G � of ðu�Þ
ox

� of ðuÞ
ox

� �
.
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Fig. 1. (a) Filter response functions for a = 0.25, M = 6. —�—: bGðnÞ; —:bQM ðnÞbGðnÞ; –+–: bQM ðnÞbGðnÞbQM ðnÞbGðnÞðQGRÞ; (b) wall-normal-inte-
grated, kinetic energy spectrum -- -: LESnew; –––: LESQG; —: LESQGR.
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By using relation (8), and keeping only the leading terms in
a Taylor series expansion about u*, we get

�0 � G � o

ox
of
ou

����
u¼u�
ðQ � G� IÞ � u

� �
. ð9Þ

In the new model, since an estimate of �0 has been
retained in the LES equation, the approximation error is

�1 ¼ �G � o

ox
½2f ðu�Þ � f ðQ � G � u�Þ � f ðuÞ�.

Using leading terms in the Taylor series about u*, and the
definition u* = Q * G * u, we get

�1 � �G � o

ox
of
ou

����
u¼u�
ðQ � G� IÞ2 � u

� �
. ð10Þ

We can expect that k�1k < k�0k when the filter Q * G is such
that kQ * G * uk < kuk or its Fourier transform
0 < bQ bG < 1ðk � k is, say, the 2-norm.). This is an a priori
expectation that the error in approximating the differential
equation reduces when the new model is used. The error
falls in the range of represented scales (where kG * uk5 0)
only. If there is significant content at smaller scales, this
reduction in error does not give an improved solution.

3. Numerical method

The LES equations are derived from the Navier–Stokes
equations for compressible flow and the transport equation
for a passive scalar (see, for example, Bird et al., 1960).
They are written in the usual divergence form for the con-
servative variables q, qu1, qu2, qu3, qe and qh, where the ui

are the Cartesian velocity components in the streamwise
(x1), wall-normal (x2) and spanwise (x3) directions and qh
is the mass concentration of the passive scalar. The density
q is related to the pressure p and temperature T by the per-
fect gas equation of state: p = qRT; R is the gas constant.
The specific total energy is e = p/((c � 1)q) + uiui/2. The
viscous stress tensor reads sij = 2lsij � (2/3)lskkdij with
sij = (1/2)(oui/oxj + ouj/oxi), and the heat flux vector
qi = �koT/oxi. Effects of bulk viscosity are neglected. The
dynamic viscosity l follows the power law

l
lref

¼ T
T ref

� �0:7

and the heat conductivity reads k = lcp/Pr. The Prandtl
number Pr and c = cp/cv have the constant values 0.7 and
1.4, respectively. Spatial derivatives were obtained with
sixth-order, compact difference formulae. The solution
was advanced in time using a third-order, optimized
Runge–Kutta scheme of Williamson (1980).

3.1. Filters

The nature of the required explicit filter Q * G can be
understood with a specific example. For any quantity u

to be filtered, we use a simple one-parameter family of Padé
filters, defined by the relation (Lele, 1992)
�uj þ að�uj�1 þ �ujþ1Þ ¼ aþ 1

2

� �
uj þ

1

2
ðuj�1 þ ujþ1Þ

� �
.

�uj and uj are discrete values on an equidistant grid at points
x = xj. For a given a, the filter width decreases and the LES
includes an increasing range of scales as the grid is refined.
We write �u ¼ G � u and, for periodic functions, obtain the
filter response function

bGðnÞ ¼ �̂uðnÞ
ûðnÞ ¼ aþ 1

2

� �
1þ cos n

1þ 2a cos n
. ð11Þ

The caret denotes Fourier coefficients and n is a scaled
wavenumber. All represented wavenumbers lie in [0,p].
The approximate inverse Q is obtained from the finite
van Cittert series (see, for example, Stolz and Adams, 1999)

Q ¼
XM

m¼0

ðI � GÞm; ð12Þ

where I is the identity operator. This approximation gives
an excellent inverse over a range of low wavenumbers,
and the range increases with M. Fig. 1(a) shows the filter



Table 1
Number of grid points and mesh sizes

Nx1
Nx2

Nx3
Dxþ1 Dxþ2 min Dxþ3

DNS560 512 221 256 13.88 0.889 9.25
LESnew 128 111 64 55.48 1.246 36.99
LESQGR 128 111 64 55.39 1.244 36.93
LESQG 128 111 64 54.76 1.230 36.51
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response function bGðnÞ for a = 0.25. The resultant filter
Q * G, with M = 6, is a perfect low-pass filter for n less
than 0.6p and then falls off smoothly. This is the required
characteristic of the deconvolution operator since we re-
quire u* � u over low wavenumbers. Regularization in
ADM is obtained by adding a term with a free parameter
v and filter G2. When v = 1/(mDt), this is nearly equivalent
to a secondary filtering every m time-steps with filter G2.
Mathew et al. (2003) had applied secondary filtering after
every time-step with G2 = Q * G. This composite filter
(Q * G)2 is similar to Q * G but has a lower effective cut-
off wavenumber (see Fig. 1(a)). So this type of ad hoc reg-
ularization is only formally present, and cannot be distin-
guished from the primary deconvolution method. In Stolz
et al. (2001), the regularization is distinct because the
parameter v is determined dynamically by measuring the
growth of energy at small scales.

Since the present channel flow simulations are periodic
in the streamwise and spanwise coordinates, filtering was
performed in Fourier space in these directions. For filtering
in the wall-normal direction on the non-uniform grid, the
filter recommended by Stolz et al. (2001) (see their appen-
dices A.1 and A.2) has been used. The deconvolution is
now performed by iteration with the primary filter G. It
is more expensive since repeated filtering is required, but
still requires only O(N) operations. The error estimates
(9) and (10) for �0 and �1 can be written in terms of filter
widths as follows. Using a Taylor series expansion, filtering
can be written as a series (Sagaut, 2002)

�u ¼ G � u ¼
X1
k¼0

ð�1Þk

k!
DkMkðxÞ

ok

oxk
uðxÞ ¼

X1
k¼0

DkAkuðxÞ;

ð13Þ

where Mk are the moments of the filter and D is the filter
width. When Q is obtained from the finite sum (12), we
have after rearranging

Q � G � u ¼ ðI � ðI � GÞMþ1Þ � u.

To leading order, using the series form (13) for G,

ðQ � G� IÞ � u ¼ DMþ1AMþ1
1 u.

Now, inserting the expressions for the operator into Eqs.
(9) and (10), we have the estimates

�0 ¼ G � o

ox
of
ou

����
u¼u�

DMþ1AMþ1
1 u

� �

and

�1 ¼ G � o

ox
of
ou

����
u¼u�

D2ðMþ1ÞAMþ1
1 u

� �
.

Clearly, filter width ðDÞ and the approximation of the in-
verse (M) control the error in approximating the governing
equation.
4. Results

The simulations were performed to predict turbulent,
supersonic channel flow between isothermal walls and
transport of a passive scalar introduced from one side
and removed from the other. The bulk density qm, velocity
um and wall temperature Tw were held constant. These
quantities and the channel half-width h are used to define
the Mach number Ma = um/cw and the Reynolds number
Re = qmumh/lw. Res = qwush/lw is the Reynolds number
based on the friction velocity us = (sw/qw)1/2. It is a result
of the computation. To enforce streamwise periodic
boundary conditions in the simulation, the mean pressure
gradient hop/oxi has been replaced by a body force �F.
During the simulation the body force was controlled to
achieve constant mass flux. At time level n

F ¼ fqu1g0 � fqu1gn

Dt
þ fs12g

h
.

Here, the braces indicate spatial averaging over the two
homogeneous (or periodic) directions.

A mean scalar gradient is imposed on the flow, using an
initial profile of the form (Johansson and Wikström, 1999)

hðx1; x2; x3Þ ¼ log10

y0 þ x2

y0 � x2

�
y0 þ 1

y0 � 1

� �
; y0 ¼ 1:007

and the boundary conditions h(x1/h, 0,x3/h, t) = 1 and
h(x1/h, 2,x3/h, t) = �1.

DNS of supersonic channel flow at Res = 221 had been
done previously by Coleman et al. (1995) and Lechner
(2001). Foysi et al. (2004) simulated flows with Reynolds
numbers up to Res = 1030. With the DNS of Foysi et al.
(2004) as a reference, three LES have been performed using
the new model (LESnew) and the previous filtering method
of Mathew et al. (2003) with secondary filtering (LESQGR)
and without (LESQG). The flows are at Ma = 3 and
Re = 6000. The wall temperature is Tw = 500 K. The simu-
lations return a Reynolds number of Res � 560. In all
cases, the Q * G filter is specified by the two parameters
a = 0.25 in Eq. (11) and M = 6 in Eq. (12). Regularized fil-
tering (LESQGR) denotes filtering with (Q * G)2.

The simulations extend over the region 4ph · 2h · 4/3ph

in the streamwise, wall normal and spanwise directions.
Grid sizes for all cases are listed in Table 1. The LES grid
has about 32 times fewer points. Data presented here were
obtained by averaging over durations of 24h/us for the
DNS and 35h/us or more for the LES cases.

Fig. 1(b) gives a first impression of how the different fil-
tering approaches behave in terms of the kinetic energy
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spectrum, integrated over the wall-normal x2-direction.
Here, and in the following plots, predictions are based on
u�i rather than �ui. As can be expected LESQGR is the lowest
curve because there is more filtering loss compared to
LESQG. With the new model terms, energy levels are higher
over most of the wavenumbers but fall off more sharply in
the high wavenumber part (see inset).

In this paper, LES results are compared with filtered
DNS data. The DNS fields have been filtered with filter
QG. We have considered LES to be a computation of a
large scale part of a turbulent flow. So the present compar-
ison is with DNS fields of the same spectral range. LES
Table 2
Mean quantities from LES and DNS solutions

�us=um �qw=qm Res

DNS560 0.0373 2.54 565.4
LESnew 0.0371 2.53 562.2
LESQGR 0.0370 2.53 562.1
LESQG 0.0368 2.53 556.5
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Fig. 2. (a) Van Driest transformed velocity; (b) rms velocity fluctuations.
Filtered DNS (dash-dot), LESnew (short dash), LESQG (long dash) and
LESQGR (solid).
quantities will differ from the actual turbulent flow because
of the omitted part, and this must be accounted for sepa-
rately when LES is used for prediction. Some measures
of the overall accuracy are listed in Table 2. The small dif-
ferences are consistent with the differences in spectral distri-
butions of the energy shown in Fig. 1(b).

Fig. 2(a) shows the distribution of the Van Driest trans-
formed mean stream-wise velocity component

uþVD ¼
Z �uþ

0

ffiffiffiffiffiffi
�q
qw

r
d�uþ.

Present and previous methods result in excellent agreement
with the filtered DNS results. The slope of uþVD in the log-
region is slightly steeper for the LES results compared to
the DNS. It should be emphasized that in compressible
flow sw is a result of the simulation and is not prescribed
through a constant pressure gradient like in incompressible
flow. Resolving the viscous sublayer is therefore crucial to
getting a good agreement between DNS and LES. This
graph may suggest that the simple explicit filtering step is
sufficient (LESQGR). Such an approach is in general incom-
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Fig. 3. (a) Mean temperature; (b) rms of temperature fluctuation (line-
types as in Fig. 2).
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plete. The new method is complete and the result shows
that the new model terms are both sufficient for performing
the computations on LES grids and that the solution re-
mains accurate. Fig. 2(b) shows results for the rms velocity
fluctuations. Again the agreement between DNS and LES
is very good. Note that solid and long-dashed lines coin-
cide. It is generally observed that the velocity rms values
are larger for the LES results compared to the filtered
DNS results, with the peaks being closer to the wall. The
new model offers an improvement in reducing the peak va-
lue of the streamwise rms velocity and comes closer to the
DNS result. Mean temperature and its fluctuations from all
the LES are in very close agreement with DNS (Fig. 3). The
inset in Fig. 3(a) which magnifies the differences shows that
these small differences remain consistent with expectations.
The regularized filtering results in a greater departure from
the DNS solution compared to just filtering with Q * G.
And, the new model brings the solution slightly closer to
filtered DNS.

It is interesting to see how the models perform in calcu-
lating higher-order statistical quantities, even though a full
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Fig. 4. (a) Dissipation rate in the hqu001u001i balance, normalized by swuav/h;
(b) dissipation rate in the hqu002u002i balance, normalized by swuav/h (line-
types as in Fig. 2).
discussion is outside the scope of this paper (details are
available elsewhere Foysi, 2005). For example, Figs. 4(a)
and (b) show the dissipation rates in the balance equations
for the streamwise and wall normal turbulent stresses
hqu00i u00j i, where the primes indicate Favre fluctuations.
The dissipation rates show higher values in the viscous sub-
layer and lower values in the logarithmic region for the
LES data compared to the DNS data. The basic filtering
approach shows the lowest dissipation rate whereas the
present new model shows the best performance. For com-
pleteness, the prediction of the passive scalar field has been
included in Fig. 5. Small differences are found in the rms of
scalar fluctuations. This quantity has two peaks as a result
of mean scalar gradient-production in the wall layer and in
the channel core. Again, the new model shows the best per-
formance in the wall layer and in the core. A similar behav-
iour is observed for the streamwise and wall-normal scalar
fluxes in Fig. 6. The fairly large deviations of the LES from
the filtered DNS data are, perhaps, due to the smoothing of
the scalar ramp and cliff structures in the LES.
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in Fig. 2).
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5. Conclusions

A new approach to LES has been proposed and tested
in supersonic channel flow with passive scalar transport.
The model is derived directly from the governing equations
of the flow without any heuristic modeling. In the basic
model presented before, the unclosed terms which appear
on filtering were estimated using an approximate deconvo-
lution of the filtered field and resulted in simple explicit fil-
tering procedure for LES. In the refinement presented
here, new terms appear which can also be estimated by
an additional filtering. In the test flow, the new method
was shown to give accurate results. In the past, LES mod-
els which appeared to mimic the model terms, such as the
scale similarity model, were not complete by themselves.
Then, computations diverged unless some kind of regular-
ization was added to take care of the net transfer of energy
out of the field at the represented small scales. The Leray
form, which provides automatic regularization, is an
exception (Geurts and Holm, 2003). The present model,
appears to offer a similar, built-in regularization. It
remains to be determined whether the new terms provide
just the right corrections so that solutions on a given grid
are not very sensitive to the cut-off location of the filter
Q * G.
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